A Multi-Dimensional Deep-Learning-Based Evaporation Duct Height Prediction Model Derived from MAGIC Data
نویسندگان
چکیده
The evaporation duct height (EDH) can reflect the main characteristics of near-surface meteorological environment, which is essential for designing a communication system under this propagation mechanism. This study proposes an EDH prediction network with multi-layer perception (MLP). Further, we construct multi-dimensional model (multilayer-MLP-EDH) first time by adding spatial and temporal “extra data” derived from measurements. experimental results show that: (1) compared naval-postgraduate-school (NPS) model, root-mean-square error (RMSE) meteorological-MLP-EDH reduced to 2.15 m, percentage improvement reached 54.00%; (2) parameters reduce RMSE 1.54 m 66.96%; (3) multilayer-MLP- match measurements well at both large small scales attaching extra height, further 1.05 77.51% NPS model. proposed significantly improve accuracy has great potential quality, reliability, efficiency ducting in ducts.
منابع مشابه
Deep Learning a Quadrotor Dynamic Model for Multi-Step Prediction
In this work, we develop and assess models for a real quadrotor in a Multi-Step prediction problem, that is, predicting the system state over many future steps using only the input. We propose a hybrid model with two configurations by combining deep recurrent neural networks with a quadrotor motion model. The proposed models take only motor speeds as input and predict the system state over a pr...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملSimulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model
Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent aim of the research is t...
متن کاملSpatial prediction of soil electrical conductivity using soil axillary data, soft data derived from general linear model and error measurement
Indirect measurement of soil electrical conductivity (EC) has become a major data source in spatial/temporal monitoring of soil salinity. However, in many cases, the weak correlation between direct and indirect measurement of EC has reduced the accuracy and performance of the predicted maps. The objective of this research was to estimate soil EC based on a general linear model via using se...
متن کاملDeep Model Based Transfer and Multi-Task Learning Deep Model Based Transfer and Multi-Task Learning for Biological Image Analysis
A central theme in learning from image data is to develop appropriate representations for the specific task at hand. Traditional methods used handcrafted local features combined with high-level image representations to generate image-level representations. Thus, a practical challenge is to determine what features are appropriate for specific tasks. For example, in the study of gene expression p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2022
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs14215484